<!DOCTYPE html>
<html>
<head>
<title>Cohomology in algebra, geometry, physics and statistics</title>
</head>
<body>
<p>
Wednesday, 26 March 2025 - 13:30 to 14:30 <br />
Place: Institute of Mathematics of ASCR, Žitná 25, Praha 1, the blue lecture room + ZOOM meeting
</p>
<p>
Speaker: Martha Valentina Guarin Escudero, Charles University<br />
Title: Change of the lecture
</p>
<p class="ql-ed">
Abstract <br />
<p class="ql-align-justify">The speaker has to postpone her talk in May because of a visa problem. </p><p class="ql-align-justify"><br></p><p class="ql-align-justify">You are welcome to<span style="background-color: rgb(255, 255, 255); color: rgb(0, 0, 0);"> the Eduard Čech lecture by Professor </span><strong style="background-color: rgb(255, 255, 255); color: rgb(0, 0, 0);">Kaoru Ono</strong><span style="background-color: rgb(255, 255, 255); color: rgb(0, 0, 0);">, Kyoto University</span></p><p class="ql-align-justify"><span style="background-color: rgb(255, 255, 255); color: rgb(0, 0, 0);"> in the blue lecture room at 15.00</span></p><p><strong class="ql-font-monospace" style="background-color: rgb(255, 255, 255); color: rgb(0, 0, 0);">Some Developments in Lagrangian Floer Theory.</strong></p><p><br></p><p><strong style="background-color: rgb(255, 255, 255); color: rgb(0, 0, 0);" class="ql-font-monospace">Abstract: </strong>Andreas Floer initiated what is now called Floer theory in the middle of 1980’s. I start with some background such as the Arnold conjecture for fixed points of Hamiltonian diffeomorphisms, which motivates him to build Floer (co)homology. After mentioning his construction, I will sketch a general story of Floer theory for Lagrangian submanifolds and explain some applications based on my joint work with Kenji Fukaya, Yong-Geun Oh and Hiroshi Ohta. I would also like to speak on a recent joint work with Bohui Chen and Bai-Ling Wang on Lagrangian Floer theory on symplectic orbifolds. In particular, we introduced the notion of dihedral twisted sectors, which is a counterpart of the twisted sector (inertia orbifold) in orbifold Gromov-Witten theory due to Weimin Chen and Yongbin Ruan.</p><p><span class="ql-font-monospace" style="background-color: rgb(255, 255, 255); color: rgb(0, 0, 0);">The lecture will also be live-streamed via Zoom:</span></p><p><a href="https://www.math.cas.cz/CechLectureZoom" rel="noopener noreferrer" target="_blank" class="ql-font-monospace" style="background-color: rgb(255, 255, 255); color: rgb(0, 0, 204);">https://www.math.cas.cz/CechLectureZoom</a></p><p><span class="ql-font-monospace" style="background-color: rgb(255, 255, 255); color: rgb(0, 0, 0);">and YouTube:</span></p><p><a href="https://www.math.cas.cz/CechLectureYoutube" rel="noopener noreferrer" target="_blank" class="ql-font-monospace" style="background-color: rgb(255, 255, 255); color: rgb(0, 0, 204);">https://www.math.cas.cz/CechLectureYoutube</a></p><p><br></p><p class="ql-align-justify"><span style="color: rgb(0, 0, 0); background-color: rgb(255, 255, 255);">There will be coffee and refreshment before the lecture</span></p><p><br></p><p><br></p>
</p>
<p>
For more information see the seminar web page at <br />
https://www.math.cas.cz/index.php/events/seminar/16
</p>
<p>
Cohomology in algebra, geometry, physics and statistics mailing list <br />
phk_seminar@math.cas.cz <br />
https://list.math.cas.cz/listinfo/phk_seminar@math.cas.cz
</p>
</body>
</html>